Asynchronous ana
Parallel Programming

Antoine Trouve
2015/05/25

Self Introduction

Family name: Trouvé (KL 1)
Given name: Antoine (7> k7 V)
Origin: Poitiers, France (7R 7 F I)

e http://ja.wikipedia.org/wiki/TR 7 F T

Study

« Master: Bordeaux Institute of Technology
 PhD: Kyushu University

Now:

« Assistant professor at Kyushu University
e Family

® -
BEias

http://ja.wikipedia.org/wiki/%E3%83%9D%E3%83%AF%E3%83%81%E3%82%A8

About this Lecture

- TwoO sessions

Slides in
» 2015/5/25 (today) Enghgh
e 2015/6/1 (next Monday)
- Content At
¢ 13:00 ~ 14:30: Lecture E ZI:EE

e 14:50 ~ 16:20: Exercise

What you will Learn

. Operating
C Programming System
Debug with Virtual Machine
orintf Use Linux
Remote
Connect via SSH Parallel coding

Programming
Launch a simple

web server Computer Image
Architecture processing

4

Why Parallel
Programming 7

How [raditional Program are
Executed

* | et us consider this program (pseudo code):

image = read 1mage file
for(x=1, x<width-1,; x++)
for (y=1; y<height-1; y++)
pixel = 1mage[x] [V]
pixel *= -1

* | Is executed as follows (if we ignore |13 and 14)

width x height times

6

Hw Architecture:
What this program supposes

* The memory stores all the
data

* [he processor executes the
instructions

Processor

- But...

Hw Architecture
What Really EXIStS

* Multi core processor
e 2 0n this figure
Memory Bus e Canbe4,6,8 ... more !

e Files are stored in slow |/Os
e Hard drive / SSD access: 1

Processor Processor
Core 1 Core 2 10ms

e Network access: 100ms

That is 100 000 00O cycles
on a 1GHz processor !

Palla

Traditional Program on
Modern Hw Architecture

Core 1 waits for slow 1/Os

\ time
* >

Coref IDLE

Core? IDLE

/0 \

Core 2 has nothing to do

9

Traditional Program on Modern
Hw Architecture (4 core)

Coref
Core?
Core3

Core4
/O

time

IDLE

IDLE

IDLE

IDLE

10

Current Processor Trends

10 Clock Rates

1 GHz
0.1
=}
. ..' . =1
0.01 8. g Processor Core and Thread Counts
(&}
a
0.001 o o *
. -
0.0001 ‘s: (_XCL
1969 1974 1979 1984 1989 1994 1999“2004 2009 2014 0) -
15 a\ m
13 - \ 7S
11— ~ ()
| T
9 g
Q’D

7
5
core IS raising 3
1 HEE e . s

1974 1979 1984 1989 1994 1999 2004 2009 2014

Source: http://ipcc.cs.uoregon.edu/lectures/lecture-16-spp.pdf

11

http://ipcc.cs.uoregon.edu/lectures/lecture-16-spp.pdf

Mini-lest

* | have the following hw architecture
e 2 processor cores at 2.6GHz (average |IPC=1.5)
e Average HDD access time: 2ms + 1Gb/s
 Average RAM access time: 100ns
 Average cache access time: 5ns
 Cache line size: 128 bits

* Question: Calculate the execution time of the following
orogram (only consider I1, 14 and |5)

j:ma%e = read ;mﬁge fﬂe)< (the image
or(x=1; x<width-1; Xx++ :
for(y=1; y<height-1; y++) s 20 MB)

pixel = 1mage[x][y]
pixel *= -1

12

Mini-lest

e | gotrich, so | bought a new processor with 8 cores
at 1.6GHz and an |IPC per core of 1.6

* Question: Will the program run faster 7

13

Conclusion

We need to better use
our computing
resources !

ASyNncnronous
Parallel
Distributed
Concurrent

Asynchronous and Parallel
== Programming

 Asynchronous = Not Synchronous
 We don't execute tasks in sequential orders
* Tasks are started before the others end
* Thisis useful to
* Hide the time spent in I/Os
* (Give the impression of simultaneity on single core

* Parallel
* When a nous tasks actually run simultaneously

we use the term parallel programming
* This is only possible it you have multiple processor
COres

16

/* We want 60 frames per second */
faefine FRAMBRATE 60 Use case of Asynchronous
/* Defines some functions and structure for my game *

#include "MyGame.h" F)rOg ramm I ng (-I)

/* GameState 1is a structure defined in MyGame.h */

GameState *game_state; Make video games both fluid
ini*mzizé)v;riables to store the time elapsed between Umaéiz;gi i[ltﬁirii(:ti\’fa

clock t last frame = clock();

clock t now;

/* The number of clocks between frames */
clock t delta = CLOCKS PER SEC / FRAMERATE;
/* Stores the key pressed by the user */

char c; : :
This program is a

/* init game state is a function defined in MyGame.h */ 1)

game_stgte =_init_game_state(); game |Oop ; the base

of almost any game

while (true) {
/* Updates the display if enough clocks are elapsed */
now = clock();
if (now-last frame > delta) {
/* render frame 1s a function defined in MyGame.h */
/* It updates the display */
render frame (game state);
last frame = now;
}
/* Captures user input */
c = getch{();
if (c!=ERR) {
/* update game state is a function defined in MyGame.h */
/* It updates the state of the game depending on user input */
update game state(game state);

}

/* We want 60 frames per second */
fdefine FRANGRATE 6 Use case of Asynchronous
/* Defines some functions and structure for my game *

#include "MyGame.h" F)rog ramm I ng (1)

/* GameState is a structure defined in MyGame.h */

GameState *game_state; Make video games both fluid
it mai and interactive

/* Some variables to store the time elapsed between tw
clock t last frame = clock();

clock t now;

' /* The number of clocks between frames */

clock t delta = CLOCKS PER SEC / FRAMERATE;

/* Stores the key pressed by the user */

char c;

Initializes the game

/* init game state is a function defined in MyGame.h *
game state = 1init game state();

Updates the display

while =
/* Updates the display if enough clocks are elapsed */ (draWS the Screen)
now = clock();
if (now-last frame > delta) {

/* render frame 1s a function defined in MyGame.h */

/* It updates the display */ PFOCGSSGS user
render frame (game state); iﬂpU’[(keyboard h|t)

last frame = now;

/* Captures user input */

c = getch{();

if (c!=ERR) {
/* update game state is a function defined in MyGame.h */
/* It updates the state of the game depending on user Input */
update game state(game state);

}

o T
d

Use case of Asynchronous
Programming (1)

Make video games both fluid
and interactive

ne functions render frame, getc

Nnd update game state should be

executed asynchronously
e Question: what happens otherwise ?

19

Use case of Asynchronous Programming (2)

Execute programs simultaneously on a single core

 Most modern operating systems are multitasked

* They run multiple programs (or tasks) at the
same time

* [his works even on a single core !

* Question: how is that possible 7

20

A first Parallel
Program

Our First Parallel Program

Example of our Program with 2 Processing Cores

T1 1image = read image file

12 for(x=1l; x<width-1; Xx++)

13 for(y=1l; y<height-1; y++)
T4 pixel = 1mage[x] [yl

I5 pixel *= -

Let us to divide calculations
between two processor cores

22

Our First Parallel Program

Divide the image among Worker

Initialization _
T1 1mage = read image file

Worker 1

worker 1
112 for(x=1; x<w1dth 1; X++)
113 for(y=1; y<height/2-1; y++)

114 pixel = image[x][y]
I15 pixel *= -1
worker 2 ‘ Worker 2

112 for(x=1l; x<width-1; X++)

113 for(y=height/2; y<he1ght 1; y++)
114 pixel = 1mage[x][y]

I15 pixel *= -1

>

23

Our First Parallel Program

Divide tasks among Workers

worker 1
T1 1mage

read 1mage file

worker 2

T2 for(x=1l; x<width-1; Xx++)

I3 for(y=1l; y<height-1; y++)
T4 pixel = 1mage[x][y]

I5 pixel *= -1

We read the data while processing it.
Warning:

- it requires worker 2 to wait for worker 1 to read
the data: this is synchronization
- we will study that next week

24

Two Approaches to
Parallelize Programs

» All workers are doing the same job, with different
data

* All workers are doing a different task, sub-part of
the algorithm

» Often looks like pipelined processing

25

Mini Test

| have the following hw architecture

e 2 processor cores at 2.6GHz (average IPC=1.5)
 Average memory access time:10 ns

» Average HDD access time: 2ms + 1Gb/s

The image is 20MB

We ignore

 [he cache

* |nstructions |2 and I3

Question: Calculate the execution time of the
programs of slide 31, 32, 33. Which one is the fastest ?

20

How Modern OS
Support Parallelism

Why are we Talking about
the OS 7

 Programs that we execute are
user programs

User Programs

* They run above the OS, that is,
they cannot access the hw
directly

0S

Hardware

* Therefore, the OS needs to
support parallelism for user
programs to benefit from it

‘ The hw/sw stack

28

Threads and Processes

 Most modern OS (Linux, Windows,
MacOSX, BSD) support two kinds of
parallel facilities

 Facility 1: Process Process Process
* Have their own virtual memory VM Virtual Memory
* Facility 2: Threads
* Have their own stack and processor Thread } Thread
state 1 2

* Threads are affected to processes
* One process owns at least one thread

e Threads of a same thread share the
same virtual memory

29

Reminder: Virtual Memory

Programs store their data in

* The processor’s registers - a few KB

e The memory (“the RAM”) - several GB

Data in the memory are designated by , stored In

In old OS, programs used to manipulate address directly to the real
memory, however

e This made impossible for programs to manipulate data larger
than the size of the memory

e This made possible for programs to modifty the data of other
programs

Therefore, modern OS hide real addresses to programs, and give
them

The memory addressed by virtual addresses is the

30

Reminder: Virtual Address
Translation

Data in the virtual memory may be physically stored in
* he memory
* the hard drive

The OS translates virtual addresses to “real addresses’:
this IS called

Address translation is executed at each memory accesses

n order to speedup address translation, modern
Drocessors feature a hardware called the TLB (translation
ookup buffer)

The TLB stores the correspondence between virtual and
real addresses

31

Reminder: Virtual Address
Translation

Program ¢ A page table maps ST
& virtual pages to -
physical frames
s p ‘ 0 f 0
m 19 109 Kb 15109 0
. I\ VICTITOT
=it Virtual j R
H Addresses Physical
\ Addresses
= : L
Page Table

Source: http://bug7015.tistory.com/category/study/Computer%20Architecture

32

http://bug7015.tistory.com/category/study/Computer%20Architecture

Reminder: The state of a

program

* The state of a program is defined by

* The state of the processor: which value in which
register ?

e The

ne state of the memory: which values in the memory 7

ne active virtual memory (that is the state of the TLB)
IS divided into three parts

e The - where are stored the variables local to
functions

e The . where are stored dynamically allocated
variables

e Other - where are stored static variables

33

Reminder: The state of a
program

Memory
‘ Address:
CPU Program Code

Instruction Pointer: Instruction D0411A1C

EH:) = OL:\"QI] 1\\ ' E‘ _’* Instrul:,t'l‘::n 00411A1F

Instruction Register : Instruction 00411A25

Instruction 00411A28
General-purpose

registers:
EAX
EBX
Data

ECX

004284ED
EDX

Stack

ESP = 0012FENG ey 0012FED4

y & ’

EBP =0012FEDC [e

|

Source: http://www.c-jump.com/CIS60/lecture01_2.htm
34

http://www.c-jump.com/CIS60/lecture01_2.htm

Mini Test

 Question: What does the OS need to store to
maintain thread ? Process 7

35

Thread Scheduling

The OS maintains a list of active threads

The threads are allocated to computing cores
When the number of threads is greater that then
number of computing cores, threads are re-

allocated every fixed amount of time

This is called

36

Example of Threao
Scheduling

Thread 1 Thread 2 Thread 3
time

- BNl EW
-e0 3 da AEEEEEC

 The OS executes the scheduling algorithm
e This is an imaginary example of scheduling

What is a Time Slice ?

time

- Il ER

oo 3 S8 HEEEEEE

Time slice
e The amount of time between

each re-scheduling.
* |t is usually constant, unless a

process waits for 1/O

38

For example thread 1
ends earlier here. This
may be because it Is
waiting for /O

What is a Context Switch 7

o CHELCEE
oer 3 B8 CHEEENIEE

Context Switch
* When the scheduler changes the thread
active on a core

* Context switch costs CPU time
* The cost depends on the kind of context
switch

39

Mini-lest

[ime R Process 1 Process 2

oot [HHHEEE
~=> 3 B3 Il

 Threads 1/2/3 are member of processes 1/2 as
shown above.

* Question: Find 3 types of context switch in the
chart below

* Question: How are they implemented in the OS,
which one is the most expensive 7

Memory Model

What i1s a Memory Model

 Modern processors feature complex memory
architectures with several levels (e.g. L1 cache, L2
cache, RAM, Scratch-pad Memory, Network)

* But those are not visible from the program

 The 'S the architecture of the
memory as exposed by the programming language

 Example: in C, the memory is unified, divided into a
global and a local memory

42

't Is common to classity parallel
programming models according to their
memory model

Interconnect

Distributed Memory

VM

Shared Memory

 When the memory is distributed, we often use the
term distributed programming instead of parallel

43

Distributed vs. Parallel
Programming

Type of parallel
programming

Parallel Distributed

Memory Model Shared memory Distributed memory

Worker Implementation Thread Process
Physical Location Same processor .
. Different processor
(typical case) (often same core)
Target Hardware Single or Multi-core Many processor
Processor systems
(AL Shared memor Message passin
Communication Model y J° P J
Major C APIs POSIR Thletal, Fork, MPI, RPC

OpenMP

44

Shared Memory vs.
Message Passing

e Context: workers want
to share data

Type of parallel Shared Message
programming Memory Passing

* When the memory is On shared
shared, they can memory
communicate by reading BuEuleaAnlres]
each other memory

On distributed

* Otherwise, they need a memory model
way to send data
between each other: this Cost of Log\cfx(;giidaw High (need to
IS Message passing communication copy data)

pointer)

45

Exercise
First steps with thread
orogramming with POSIX Thread

Shared memory
model

Before Starting, Let us Setup
the Environment

Configure your virtual machine on Laboratory Cloud

Install some programs on your personal computer in
order to edit the files on Laboratory Cloud

About Virtual Machine

 We will use the Cloud as experimental @
environment 3

* You will have access to your own virtual
Lab.Cloud
machine (VM) on Amazon Web Service ° o4
(AWS), through Laboratory Cloud %
(LabCloud)
e |tis like having your own computer, but in amazon
a remote data center in Tokyo webservices

* We will connect remotely (ssh) to edit files
and execute experiments

* You can think of a virtual machine as a real
computer

48

Configure your Account to
Create a Virtual Machine

* Access to Laboratory Cloud
» https://www.laboratorycloud.org
» Access to the “toolbox” (*Y =)Ly 7 X)

"B Lab.Cloud

FEH - RE -HREISIVFLTIYREL!
Y—WHERD - AVFAVTERS - PAMBHEN NS

| Topics/News

Wvascrptvoaly" © X Z

49

https://www.laboratorycloud.org

eve < i « www laboratorycloud.org s SRy I_Ogin or create

m Lab.Cloud/i—A~~3/ Lab.Cloud MOOC&SPOC ’ t (' st . b | a neW aCCOU n‘t
“SJLab.Cloud : o
Tool Box

ESTEYAMR. EMF O/ MERRISS QITYRIES

V=

° 1 - /
o S | -
g1 Eax— 9y—n@ﬁ“qu§w&f"f>\% am ’
Al - RE - RR-HREEEI59 FLT&B@L&T
EEIAVYTUY ’q'.w':., M ek e sl OO — o oc (B v o7 e

t{}Lab.Clq.gc“_ a

— WA T - — BLraTamyen roe LR R] -tre

. AR L B L L BAFRY A e N

=
| XZa-E®R DLab Cloug.

’ﬂ :.&.,-\1-117 F7rHO -0
&MV -9 Y—-AEROET LR 4 Lab.Cloud
| = EARH R
F7ho R

Lab.Cloud¥W—JLiRw 2 XD
M IR-T, (%) B85 e ———
DT A NTOTA >4, | R BT
GEABT : F7HONER B SERGIUnIm e ——
gl Z20VUwv 0

Lab (_:d I WingArc Jsr Ca -

Lab.Cloud¥ —JLiRw 22D kw TR—= SEABIT : FPHOD RNEBRR—-

50

ST EDSD :

@ OEAEIT : F7HO> RNERFR] R—2T. [H—bNeml #2oUw2,

@ [BAFGE] 20UvOULT [H— bORB] R—IAEE,

R [H—POREB] R—ZT. [FEXFEHESEAN] 20Uwv,

@ EIRFTAAFIDRESERDGE. [BEEBIR] R—THEPZEIRLU. [HKlITD] Z
oUw 2,

EABIT : F77Hh0>

RNESR) R—

[Hh— hDAT] R—2 [BEXBHR] R—>

o o
e~ .o (] = o o - -
'3l.|l.u Cle 'g g e

t L 4
R AR
— .
— -
. .- tan .. g -.--.- > - "
e e & p4 = A

|

{@ [BAFHZ] &2 {@ EXFHEA ’&J {@ (RBRDIBS) &J

® [H—BMCEN %=
oUw D

—— L.

Uwo 2 BRIFs Ph7a S

51

Lab Clowt™ T

EVPRLNAIFAY -
" Lab Clows®. ~ 4, Lab Cloud MOOCASPOX
*ﬁ LabCl%ga Q LAl ELE

MOOCOIMET NG HERF AR ATRR B W) BATDYADTLIAD-FRA) 2AM 7D ARAR aIren

CEXFHRE A

HEBEDEATI-R. &

-
3

KU 7RI REZEAS

asnes oM

-‘. o ol
Y ; S o
: !

- .

a2 3 :
- e 2
-)

-

-

>

rﬁx&mﬁ g 5.’ Ea Fx OBy DREF 220 E LY, ANV ENSLL GO RGN Y. oo (5Qedage xnne p
0001712444
| | w 0 1100064 SRR SRAPRE B
J J 3c1 re it

TEXFHE] DR—D

F#EDII—R :677162933971980
D7 o> N4 : trouve@soc.ait.kyushu-u.ac.jp

+ Login, Again

52

mailto:trouve@soc.ait.kyushu-u.ac.jp

Create a Virtual Machine

o0e < a w waw ! laboratorycioud.org . A d ©O
Lab.Cloud ¥ =AMy 2 X MR ARR .+l

. M—LR—- | AOOCASPOC &35S or . N ,
Lab Cloud— L~ 2/ b Cloud MOOCASPOC L it o ® a - 1. orgMaasndex azho 0 o

".,ﬂl'ab s P Q | Lab.Cioud 7~ A9 2% . wanARR nmyRAR +|

| Lab.Cloud wnzm

g . MM ARRE L, o r A ;
_19/2!‘&&!!97795 (R, O
‘mE; ToMmY <\ |
,,,, Z ﬂﬁﬁ %

BL{BCS55%

[oyv—LoiR~—> Ik E%%:—P100247389
2T55

EHAVE1I—9Y—LERVRENA -
s - RH -8R - E%Eﬁ%?vﬁbh?ﬁﬂb&?

'R, MBETERE S A7 ACEREY _RBRTHEY S, Cotuh, SHORANS

§ cmmcHmT3

00247389

LTCRAW,

= P

Y- EbMR 7-ANS

e » - Wow | ey 07g aen i her exiw 140 . - o
e Ot 7 Ay TR LBt s *|

Ao o) /0

No page % daplay

FPEMNEF 92859228
[AZz=amm

BUbUNUIEIFIZFHIENE T, £ CI——ss
FxVv IRV IR%&T)Yy R

A=THRA)3~4 (XbL~Y) B

S UTXEREETENNY S

Y=NEW Y- NEUsx) KoY~ EhaR U-LER
Javsa,. — =Y o nr

Advenced Computer Acchitecture LIRIRN 7 225 2

ene L8 # waw labormonycioud cng taasmode_app phe
1 . Lab Ciowd ¥ —AMy IR | 7-LBR

V-LARERL BERSLLTIOIZO2MF S
Y= ST

ERNm: 1SIT

(AR 7ORRB, ARDLAFLNY a~LARRRERYRELLEY)
Y-RWRES: AN B UV-AEP?IERE
PRVAFLNARSYSSORY,
O5: Utunty
PR £7-LE, Adaccd Compater Acchitecture IRRMI A A9 X TY,

L N 1 - www ! aborstonycioud ong/l ses check phe 8

AF 972 A 2AF2ART v a /RE) AL

AR A-URRBLARALY,
A A-URRUnn R BOVATAFEYIC THGROA Y L~ VNS ANNEENnE Y.
(TYAFVADHLEPLAN L~ IREBURSLEY,

YA YEART v a YR

i y Lab Coud 7~AM 92X | NEWERZ L UHTAREE

CHRYG(AUOLVATAT AZERRLEVSEY, IRUEBE Ve Y FLAVZERS, "Y-ANRALT YR, ~~VEOMR,LTL

{ YA ADRBRMERALORTRT A LA VARGOREYRARY,
AENRTRS. CYAPYAORTRRESTIARIN A,

A ST A ST T IS s P AN TN KB IO 0 TR SN AETH N0

BREIVEABTA A AEERT &

STEPU A # AP A2 T 3 AREN
(CYAF AT VA/BREERRT SOAEE B 6A)

RIEUVICARTA VRY VX Z i)

(SRNDNRETLLIDY7 7R PERRLEIBEN)

]

Connect to your VM

e First you need the IP of the VM so you can connect
to it through the Internet

[a] ® Il # wwwi_laboratorycloud.org/laas/rdp_acces o u o (4]

Lab.Cloud ¥ =Mty 2 A 7 V= NER +|

O
YE=hFRY by 7Y BN

ITMPEDVYITIN FNRT

DICKT ~ B T OO~ EBIURET DL
g LY TERTALVERL UT—h TR by 7 RREE

Access your VM via SSH

SSH (Secure SHell)

 SSH is a protocol to access a distant computer
via the network (terminal, file manipulation)

e Uses encryption

 Enable to execute command as if your were on
the distant computer

On Windows: download Putty

« Site: http://www.chiark.greenend.org.uk/
~sgtatham/putty/download.html

e File “putty.exe”

On MacOSX: use the Terminal

* |n Launchpad, look for “terminal”
Your connection information

e User name: student

e Password: | am a student...

e |P: TBD

56

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Install Putty

e ¢ Windows 8 x64
1 u MSN Japan - Hotmail, Outiook I Qf Notepad++ Home e PUTTY: a free telnet/sshcli X = — o
é O hiark greenend.org.uk/~sgtatham/putty m ﬁ @, @ ©

PuTTY: A Free Telnet/SSH Client

Home Licence FAQ |
Mirrors | Updates | Feedback §

PuTTY 1s a free implementation of Telnet and SSH for Windows and Unix platformss '
Tatham. > i

The latest version 1s beta 0.64,

Binaries

The latest release version (beta 0.64),% firs will generally be a version I think 1s reasonably likely to work well. If you have a problem with the release version, it might be worth

....

PuTTY: (or by FTP) (RSA sig) (DSA sig)
PuTTYtel: B R (or by FTP) (RSA sig) (DSA sig)
PSCP: sCp.exe (or by FTP) (RSA sig) (DSA sig)
PSFTP: psftp.exe (or by FTP) (RSA sig) (DSA sig)
Plink: plink exe (or by FTP) (RSA sig) (DSA sig)
Pageant: pageant exe (or by FTP) (RSA sig) (DSA sig)

PuTTYgen: puttygen exe (or by FTP) (RSA sig) (DSA sig)

Access your VM via SSH (Windows

Enter the IP address

login as: “student”
of your VM

password: “| love programming!”

&8 PuTTY Configuration X Al —— —
p Categoy £P 52.68.110.51 - PuTTY - D X
- Session
[3
r Lo;‘;m; Specty the destination you want to connect to
emina
%) P . P
Keyboard .;os! N{.\arre {or |P address) .“on
Bell 52.168.110.51 22
bt Features Connection type:
VWindow Raw Telnat Riogin (@) SSH Senal
Aopearance
g_) Load, save or delete a stored session
S YOUr
Transiation Saved Sessions
Selection
CO‘OU’S w
auk Settings Load
-- Connection
. Data Save
Proxy
Teinet Deete
Rlogn
+-SSH
— Close window on e
Always Never ®) Only on clean exit
e
About Open Cancel
—— T AOCETT A L W Y
— - 2 - 4

58

Access your VM via SSH (MacOSX)

Type in the terminal “ssh student@|P"

4 trouve — bash — 80x24 Type the paSSWOrd “| |Ove

.))
e tromven b revSeaeRs 15h T 120 programming!

®° [trouve = student@ip-acif1bdl:~ — ssh H126x24

StudentOip-ac1Mbdt:~ +
to t vdentPs2. 68
uoent@s2.68 word!
e e T trouve — student@ip-ac1f1b31:~ — ssh — 126x24
stucent@ip-acifib31:~ +|
roz-ito:~ trouves ssh student@sS2.
student@52.68.110.51"s password:
Last login: Wed May 6 11:56:12 2015 from (114-188-59-123.542.2040.0p.plala.or.jp
(student@ip-aclfibil ~]$ s
[student@ip-ac1fid3l ~1s |}

59

Edit Flles

e You can edit files with the command line

e With command “vim” or “emacs” on Putty /
Terminal

e Butitis more convenient to use some remote GUI
editing tool

* Windows: Notepad++ (NppFTP window)

» MacOSX: Cyberduck “edit” button

Your very first program
N Pthreads

POSIX Threads in C

* The default way to create threads in Linux is POSIX
threads, or pthreads

* Pthread library is accessible via the library file
‘pthread.h”

* Major functions:
* Create athread: pthread create(...)
« Walt for thread to complete: pthread join(...)
 Return a value: pthread exit(..)
» Getthe id of the current thread: pthread self ()
 Compare thread ids: pthread equal(...)

62

man pthread_create

An address where to SRt ALLC

Says to the compiler that no other

store the thread id pointer points the same object.

$> man pthread_create

NAME
pthread create -- createfa new thread

SYNOPSIS
#include <pthread.h>

int
pthread create(pthread t *restrict thread, const pthread attr t *restrict attr, void *(*start routine) (void *),
void *restrict arg);

Some options to The function to run in
Argument to pass to create the thread the thread

the thread function

#include<stdio.h> YO U r Fi rSt

#include<unistd.h>

#include<string.h>
#include<pthread.h> Pt h re ad

void* doSomeThing (void *argqg)

| Program

printf ("Starts thread...\n");
sleep (3);
printf("... ends thread.\n");

return NULL;
}

int main(void)

{
int 1 = 0;
int err;
pthread t tid;

err = pthread create(&tid, NULL, &doSomeThing, NULL) ;
1f (err '= 0) {
printf ("\ncan't create thread :[%s]\n", strerror (err));

}

return 0;

Compile / Link / Execute

(D Compile the program

@ Link

$> gcc pthread.o -o pthread.out YOU ﬂeed to te”

/tmp/ccW661pz.o: In function "main':
pthread.c: (.text+0x57): undefined reference to ‘pthread_create’ gcc to link with
collect2: error: 1ld returned 1 exit status :

libpthread

$> gcc pthread.o -lpthread —o pthread.out

@ Execute

$> ./pthread.out

65

Do you get What you
Expect 7

Nothing happens !

66

Parent / Child Thread

return 0

main thread : .
“ P The parent Kills
kY g the child

' /sleep@) i thread

e The main thread finishes before the other ones

 Because the main thread created the child
thread, it is its parent thread

* |f the parent thread dies or finishes, the child
thread is interrupted by the OS

Question

HOow would you make the
children thread terminate

How to Make the Child Thread
Terminate 7

Answer: make the
parent thread for
its children |

69

VMethod 1 (the bad one

int main (void)

{

int 1 = 0;
int err;
pthread t tid;

err = pthread create(&tid, NULL, &doSomeThing, NULL);
1f (err !'= 0) {
printf ("\ncan't create thread :[%s]\n", strerror (err));

}

sleep (3);

return 0; _ Wait some time for
children to finish

70

Method 1 (the bad one)

BAD !
INn general, we don't kKnow how
long we have to wait |

Method 2 (the good one)

int main (void)
{
int 1 = 0;
int err;
pthread t tid;

err = pthread create(&tid, NULL, &doSomeThing, NULL) ;

if (err !'= 0) {
printf ("\ncan't create thread :[%s]\n", strerror (err));

}
pthread join(tid, NULL); ASkS the parent tO

walit for the child

pthread _jom

The parent thread

;M \waits for the child
g to finish

child thread *

72

Your very first useful
program with Pthreads

Edge Detection Program

Edge Detection Program
~Flow

Read the image file (format bmp)

Copy the image

Apply a convolution matrix (3x3)

Saves the image

75

How to Read/Write the

Image rile

Format "omp”

Header (54 bytes)

Pixels
(row major)

/6

Pixel (32 bits)

. Red
| 8 bits

Green
8 bits

Blue
8 bits

void
38 bits

Always 0

What is a Convolution Matrix

Center element of the kernel is placed over the (0 X 0)
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

.\‘ /

Convolution kernel
(emboss)

Mmoo w
.

New pixel value (destination pixel)

Source: http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma
77

http://stats.stackexchange.com/questions/114385/what-is-the-difference-between-convolutional-neural-networks-restricted-boltzma

int main(int argc, char* argvl[]) {
int x, y, offset;
int CPy kx, kYI px, Pys

if(argc!=3) { printf ("Please specify the names of the input and output files in
parameters:\n\t %s <input.bmp> <output.bmp>\n", argv([0]); exit(-1); }

printf ("Size of a pixel: %i\n", sizeof (bmp pixel t));
unsigned char info[54];
unsigned char* data = read BMP(argv([l], info);

if (data==NULL) { printf ("Unable to open the file. Exit...\n"); return -1; }

printf ("Start stuffs...\n");

int width
int height

= BMP WIDTH (info) ;
BMP HEIGHT (info);

unsigned char* new data = malloc(width*height*sizeof (bmp pixel t));

bmp pixel t *pixel;
for (y=1; y<height-1; y++) {
for(x=1; x<width-1; x++) {
pixel = BMP PIXEL (data, x,y);

for(offset=0; offset<3; offset++) {
cp=0;

for (kx=0; kx<3; kx++) {
for (ky=0; ky<3; ky++) {
px = (x+kx-1)% (width-1);
py = (y+tky-1)%(height-1);

cp += ((int)BMP PIXEL COMPONENT (data,px,py, offset)) * kernel matrix[kx]
}
}

BMP PIXEL COMPONENT (new data,x,y, offset) = (unsigned char) (cp&0Oxff);

printf("... end.\n");

if (write and free BMP(argv[2], new data, info)==-1) ({
printf ("Unable to write the file. Exit...\n"); return -1;
}

free (data) ;

return 0;

The Serial Version
of the Program

The main function
only

int main(int argc, char* argv[]) {
S o

int cp, kx, ky, px, py;

if(argc!=3) { printf ("Please specify the names of the input and output files in
arameters:\n\t %$s <input.bmp> <output.bmp>\n", argv[0]); exit(-1); }

printf ("Size of a pixel: %i\n", sizeof (bmp pixel t));
unsigned char info[54];

unsigned char* data = read BMP(argv([l], info);

if (data==NULL) { printf ("Unable to open the file. Exit...\n");

printf ("Start stuffs...\n");

int width = BMP_WIDTH(infO);
int height = BMP HEIGHT (info) ;

unsigned char* new data = malloc(width*height*sizeof (bmp pixel t));

bmp pixel t *pixel;
for (y=1; y<height-1; y++) {
for(x=1; x<width-1; x++) {
pixel = BMP PIXEL (data, x,y);

for(offset=0; offset<3; offset++) {
cp=0;

for (kx=0; kx<3; kx++) {
for (ky=0; ky<3; ky++) {
px = (x+kx-1)% (width-1);
py = (y+tky-1)%(height-1);

cp += ((int)BMP PIXEL COMPONENT (data,px,py, offset)) * kernel matrix[kx

}
}

BMP PIXEL COMPONENT (new data,x,y, offset) = (unsigned char) (cp&Oxff);
}

}

printf ("... end.\n");

if (write and free BMP(argv[2], new data, info)==-1) ({
printf ("Unable to write the file. Exit...\n"); return -1;

}

free (data) ;

return 0;

The Serial Version
of the Program

Loads the bmp file

Applies the
convolution matrix

P Writes the bmp file

Compile / Link / Execute

(D Compile and link the program

80

Exercise /| Homework

e Execute the serial program. Try with atghan and
afghan_blur. Which one looks the best ?

| | Defined at the
* [ry other convolution matrices. top of the file

 Modify the program so that it executes vvlth tvvo
worker threads. Use data-parallelism: "

Worker 1

Worker 2

81

