
Introduction to Optimizing
Compilers

Antoine Trouvé

アントワン トルヴェ

2014/06/23

まず、自己紹介

2

Antoine
アントワン

Trouvé
トルヴェ

名 姓

パリ

ボルドー

２００６年
フランスのボルドー大学で修士取得

（「ENSEIRB」グランゼコール）

２００7年~2014年
九州先端科学研究所（ももち浜＠福岡市）

研究員

２０１１年
九州大学で博士取得

現在
九州大学の助教

ポワチエ

Contents of the Presentation

3

Introduction

to Optimizing Compilers

入門

最適化
コンパイラ

4

Today’s Objective

Accelerate computer programs

Outline

• Internal representation of programs

– The control flow graph (CFG)

– The data-flow graph (DFG)

– The static single assignment form
(SSA)

– The function-call graph

• Example of Optimizations

– Example 1: constant propagation

– Example 2: function inlining

– Example 3: combination

• Loop optimization

– Definition of loops

– Example of nest interchange

• Conclusion

5

• Introduction

– Core / Threads

– Single thread and parallel performances

• Introduction to programming language

– The compilation flow

– Quick history of programming languages

– Quick taxonomy of programming languages

• What is a compiler ?

– We need a translator

– Difference between a compiler and an
assembler

• Introduction to Optimizations

– Introduction to the intermediate
representation (IR)

– The front / middle / back ends

– Example of optimizations

INTRODUCTION TO CORE, THREAD AND
SINGLE-THREAD PERFORMANCE

6

Computing Core

• Computer programs are executed on processors
• Processors are made of one or more computing

cores
• A computing core executes a sequence of

machine instructions
– Traditionally, one core executes one sequence of

machine instructions
– Exception of Intel Hyper-Threading: one core

executes two sequences of instructions

• The list of instructions that a core understands is
called the Instruction-Set Architecture
– Examples of ISAs

• x86 (Intel 32 bit), x86-64 (Intel 64 bits)
• MMX (early Intel multi-media extension
• ARM v7, the most (only ?) used ISA in smartphones

– One core may understand more than one ISA
• Example of Intel Haswell (latest Intel architecture): x86,

x86-64, MMX, SSE, SSE2, SSE3, AVX, AVX2 …

7

Computing core

Processor

Motherboard

Processing Core: Example

8

11110010010111

Computer
Memory

Processor (one core)

Bus
(on the motherboard)

Definition of the ISA

Instruction Encoding

Top 00

Bottom 01

Left 10

Right 11

Processor: Picture of Intel Ivy Bridge

9

Core 1 Core 2 Core 3 Core 4
GPU

(16 cores)

Memory sub-systems (caches)

I/O

ISA: x86_64 with extensions

What is a Computing Thread ?

• A computing thread is a sequence of machine instructions
– The instructions are executed one after the other
– The execution order might vary depending on the architecture of the

processor (e.g. out of order execution)

• A computer program is made of one or more threads
– One thread: single-thread programming
– >1 thread: multi-thread programming

• Threads allow to parallelize computations
– We can expect programs to run faster (see next slide)
– But one needs more than one computing core (hardware overhead)

• Multiple thread can also run on a single core
– Threads are cut smaller sequence and scheduled by the operating

system
– Few acceleration to expect unless the program is often waiting for I/Os

10

Single Thread and Parallel Performances
On an example first (1/2)

11

k = scanf(“%d”)
sum = 0

for(i= 0 to N/6) M[i]=M[i] % k
for(i= N/3+1 to 2*N/3) M[i]=M[i] % k
for(i=2*N/3+1 to N) M[i]=M[i] % k

for(i=0 to N) sum+=M[i]
print(“%d”, sum)

5 tasks

1 second

Our program: 5 tasks of 1 second
Green: can not execute in parallel
Red: can execute in parallel

Single Thread and Parallel Performances
On an example (2/2)

12

① Sequential execution (no thread)

time

5 seconds

② Parallel execution (with threads)

3 seconds
+overhead

③ Sequential with 2 times faster single thread performance

2.5 seconds

④ Parallel execution and faster single thread performance

1.5 second

Single Thread and Parallel Performances
On an example (2/2)

13

① Sequential execution (no thread)

time

5 seconds

② Parallel execution (with threads)

3 seconds
+overhead

③ Sequential with 2 times faster single thread performance

2.5 seconds

④ Parallel execution and faster single thread performance

1.5 second

Required hardware:

1 processor core

Required hardware:

3 processor cores

Required hardware:

1 twice faster processor core

Required hardware:

3 twice faster processor cores

Gene Amdahl
1922 ~ (92 y.o.)
Formulated while at IBM

Amdahl’s Law

14

𝑆(𝑁) =
1

1 − 𝑃 + 𝑃/𝑁

N: number of cores
S(N): Speedup by using N cores
P: part of the program that you

can parallelize

1 3 5 7 9 11 13 15

P
er

fo
rm

an
ce

s

Cores

Perf (P=80%) Perf (P=90%)

* picture: courtesy of Wikipedia

Previous example:
N=3, P=3/5=60%⇒ S(N)=1.67 times faster
(compared to N=1 and P=0)

Gene Amdahl
1922 ~ (92 y.o.)
Formulated while at IBM

Amdahl’s Law and Single-thread
Performance

15

𝑆(𝑁) =
𝑆𝑇𝑆

1 − 𝑃 + 𝑃/𝑁

N: number of cores
S(N): Speedup by using N cores
P: part of the program that you

can parallelize
STS: Single-thread speedup

* picture: courtesy of Wikipedia

Previous example:
N=3, P=3/5=60%,STS=2⇒ S(N)=3.32 times faster
(compared to N=1, P=0 and STS=1)

1 2 3 4 5 6 7 8

P
er

fo
rm

an
ce

s

Number of cores (N)

P=80%,STS=2

P=60%,STS=2

P=80%,STS=1
P=40%,STS=2

P=60%,STS=1

P=40%,STS=1
STS=2

STS=1

INTRODUCTION TO
PROGRAMMING LANGUAGES

16

The Development Flow

• Everything starts with an idea

• The programmer implements
the idea in a programming
language

• The programming language is
compiled in machine code

• The machine code is executed
on the processor

• The programmer repeats the
flow until the program is fast
enough

17

①実装

②コンパイル

③性能計測
（実行）

④手動
最適化

早い：終了遅い

アイデア

プログラム
（例：津波シミュレー

ション）

実行可能
プログラム

人間言語から
パソコン言語まで

最適化ループ
性能向上が必要
（最適化）

18

①実装

②コンパイル

③性能計測
（実行）

④手動
最適化

早い：終了遅い

アイデア

プログラム
（例：津波シミュレー

ション）

実行可能
プログラム

人間言語から
パソコン言語まで

最適化ループ
性能向上が必要
（最適化）

現在地

Very Quick History of Prog. Lang. (1/2)
Early times

1940’s: machine code (first generation of prog. Lang.)
• Programming using binary code directly
• Example of the frog: 11110010010111

But binary has low productivity
• Too complex for human being: error prone
• Very hard to write large programs

1950’s: assembly language (second generation of prog.
lang.)
• Instead of writing “1” and “0”, people write “add” or “sub”
• Example of the frog: 右;右;上;左;下;下;右

Productivity is better than binary, but it could be better
• Quick fix: people use “macro assembly instructions”: instead of

writing 右;右 we can write ２回右
• No real “high level language” yet 19

Very Quick History of Prog. Lang. (2/2)
Toward modern languages

End of 1950: Apparition of first programming languages (third generation
of prog. lang.)
• Fortran: scientific calculations
• Cobol: data processing
• Lisp: functional language

1969-1973: C language
• Created in Bell laboratories (USA) to implement the first UNIX OS
• The most used language right now
• Meant for system programming, but used for everything now

(unfortunately)

1983: C++ language (object-oriented language)
• Extension of C to support object-oriented programming
• Widely popular now

1996: Java (virtual machines and just-in-time compilation)
• Resembles C++, but abstracts memory allocations
• Originality: the Java compiler compiles in bytecode, not machine code

20

Written not as
text files, but

as punch cards

Example of Languages

21

int main() {
int seed = 3, k=42, N=67;
for(int i=0; i<N; i++) seed = seed * seed % k;
return seed;

}

09 2e 73 65 63 74 69 6f 6e 09 5f 5f 54 45 58 54
2c 5f 5f 74 65 78 74 2c 72 65 67 75 6c 61 72 2c
70 75 72 65 5f 69 6e 73 74 72 75 63 74 69 6f 6e
73 0a 09 2e 67 6c 6f 62 6c 09 5f 6d 61 69 6e 0a
09 2e 61 6c 69 67 6e 09 34 2c 20 30 78 39 30 0a
5f 6d 61 69 6e 3a 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 23 23 20 40 6d 61 69 6e
0a 09 2e 63 66 69 5f 73 74 61 72 74 70 72 6f 63
0a 23 23 20 42 42 23 30 3a 0a 09 70 75 73 68 71
09 25 72 62 70 0a 4c 74 6d 70 32 3a 0a 09 2e 63
66 69 5f 64 65 66 5f 63 66 61 5f 6f 66 66 73 65
74 20 31 36 0a 4c 74 6d 70 33 3a 0a 09 2e 63 66
69 5f 6f 66 66 73 65 74 20 25 72 62 70 2c 20 2d
31 36 0a 09 6d 6f 76 71 09 25 72 73 70 2c 20 25
72 62 70 0a 4c 74 6d 70 34 3a 0a 09 2e 63 66 69
5f 64 65 66 5f 63 66 61 5f 72 65 67 69 73 74 65
72 20 25 72 62 70 0a 09 6d 6f 76 6c 09 24 30 2c
20 2d 34 28 25 72 62 70 29 0a 09 6d 6f 76 6c 09
25 65 64 69 2c 20 2d 38 28 25 72 62 70 29 0a 09
6d 6f 76 71 09 25 72 73 69 2c 20 2d 31 36 28 25
72 62 70 29 0a 09 63 6d 70 6c 09 24 31 2c 20 2d
38 28 25 72 62 70 29 0a 09 6a 67 09 4c 42 42 30
5f 32 0a 23 23 20 42 42 23 31 3a 0a 09 6d 6f 76
6c 09 24 2d 31 2c 20 2d 34 28 25 72 62 70 29 0a
09 6a 6d 70 09 4c 42 42 30 5f 33 0a 4c 42 42 30
5f 32 3a 0a 09 6d 6f 76 71 09 2d 31 36 28 25 72
62 70 29 2c 20 25 72 61 78 0a 09 6d 6f 76 71 09
38 28 25 72 61 78 29 2c 20 25 72 61 78 0a 09 6d
6f 76 73 62 6c 09 28 25 72 61 78 29 2c 20 25 65
63 78 0a 09 61 64 64 6c 09 24 33 2c 20 25 65 63
78 0a 09 6d 6f 76 6c 09 25 65 63 78 2c 20 2d 34
28 25 72 62 70 29 0a 4c 42 42 30 5f 33 3a 0a 09
6d 6f 76 6c 09 2d 34 28 25 72 62 70 29 2c 20 25
65 61 78 0a 09 70 6f 70 71 09 25 72 62 70 0a 09
72 65 74 0a 09 2e 63 66 69 5f 65 6e 64 70 72 6f
63 0a 0a 0a 2e 73 75 62 73 65 63 74 69 6f 6e 73
5f 76 69 61 5f 73 79 6d 62 6f 6c 73 0a

Binary Machine Code Assembly (Intel x86-64)
_main: ## @main
.cfi_startproc

BB#0:
pushq %rbp

Ltmp2:
.cfi_def_cfa_offset 16

Ltmp3:
.cfi_offset %rbp, -16
movq %rsp, %rbp

Ltmp4:
.cfi_def_cfa_register %rbp
movl $0, -4(%rbp)
movl $3, -8(%rbp)
movl $42, -12(%rbp)
movl $67, -16(%rbp)
movl $0, -20(%rbp)

LBB0_1:
movl -20(%rbp), %eax
cmpl -16(%rbp), %eax
jge LBB0_4

BB#2:
movl -8(%rbp), %eax
imull -8(%rbp), %eax
cltd
idivl -12(%rbp)
movl %edx, -8(%rbp)

BB#3:
movl -20(%rbp), %eax
addl $1, %eax
movl %eax, -20(%rbp)
jmp LBB0_1

LBB0_4:
movl -8(%rbp), %eax
popq %rbp
ret
.cfi_endproc

C

seed = 3; k = 42; N = 67
(0…N).each { |x| seed = seed * seed % k }

ruby

There are many Paradigms to Classify
Programming Languages

22

Memory model
Von-Neuman ?
NUMA ?

NUMA: Non-uniform memory accesses

Threading model
Single-thread ?
Explicit threads ?

Programming model
Object-oriented ?
Functional ?

Runtime
No runtime ?
Virtual machine ?

Memory allocation model
Explicit allocation ?
Automatic reference counting ?
With garbage collector ?

Compilation model
Statically compiled ?
Just-in-time compiled ?
Interpreted (not compiled) ?

Typing model
Strongly typed ?
Weakly typed ?
Non-typed ?

There are many Paradigms to Classify
Programming Languages

23

Memory model
Von-Neuman ?
NUMA ?

NUMA: Non-uniform memory accesses

Threading model
Single-thread ?
Explicit threads ?

Programming model
Object-oriented ?
Functional ?

Runtime
No runtime ?
Virtual machine ?

Memory allocation model
Explicit allocation ?
Automatic reference counting ?
With garbage collector ?

Compilation model
Statically compiled ?
Just-in-time compiled ?
Interpreted (not compiled) ?

Typing model
Strongly typed ?
Weakly typed ?
Non-typed ?

Most language are multi-paradigm

WHAT IS A COMPILER ?

24

25

Programmers use programming language

Processors only understand machine code

but

We need a translator: the compiler

26

現在地

Input / Output of the Compiler

27

Human Readable
Language Compiler

Machine
Code

1001101001110001010b=a+2; c=b*4;

Usually
C, C++

Usually rather generates assembly

Assembly Assembler
Machine

Code

Complex statements, easy to
understand by the human brain

Simple statements, easy to process
by machines

Example of program

28

The example of the
frog of slide 8

Example of assembly

29

you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

Compiler

right
right
top
left
bottom
bottom
right

Programming language
(human readable language)

Assembly

1. Reads English
2. Writes assembly

Definition of the ISA

Example of machine code

30

Assembler

right
right
top
left
bottom
bottom
right

Assembly

Instruction Encoding

Top 00

Bottom 01

Left 10

Right 11

11110010010111

Machine Code

Assembly and Machine Code are
equivalent.

Each processor architecture come with its
dedicated assembly and machine code
languages.

(Usually) One assembly instruction
per processor instruction

(modern assembly language feature
“pseudo” or “macro” instructions that

correspond to more than one processor
instruction)

Sum-up: the Compilation Flow

31

you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
right
top
left
bottom
bottom
right

11110010010111Compiler Assembler

Programming
Language

Assembly
Language

Machine Code

Popular Compilers
Intel Compiler (icc)
Microsoft Compiler (Visual Studio)
GNU C Compiler (gcc)
LLVM

32

But the compiler is far more than just a translator…

It can optimize programs

COMPILER OPTIMIZATION

33

34

There are unnecessary moves in this program

Can you find them ?

35

Hard to answer from the text of the program:
people tend to use graphical representation

The compiler is the same !

The Intermediate Representation

36

• The IR is the way the compiler represents program
internally

• It expresses the important properties of the
program for further analysis

• In particular, it eases optimization

Example of Optimization

37

Unnecessary moves !

Same goal, but less
moves !

Optimization

38

Optimization is about Removing
Unnecessary Calculations

But, without changing the result
of the program

Front / Middle / Back-end (1/2)

39

you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
bottom
right

Frontend

Programming
Language

Assembly
Language

Middle-End

IR

Backend

IR

Front / Middle / Back-end (1/2)
• Frontend

– Input: Programming language
– Output: Intermediate representation
– Key steps: lexing, parsing
– Often uses another IR inside for: the abstract syntax

tree (AST)

• Backend
– Input: Intermediate representation
– Output: Assembly
– Key steps: instruction selection and register

allocation

• Middle-end
– Input: Intermediate representation
– Output: Intermediate representation
– Key steps: many kinds of optimizations !

• Intermediate representation (IR)
– Stored in memory, but can also be saved in files
– Every compiler has its own IR (gcc, LLVM …)

40

Frontend

Middle-End

Backend

Programming
Language

Intermediate
Representation

Intermediate
Representation

Assembly

Also called High
Level Language

Grammar, language theory

Optimizations are carried at
every compilation stage

• In the front-end
– The transformations from HLL to IR

should be of high quality
– Several optimizations are done at AST

level
– AST is often referred to as a “high-level

IR”

• In the backend
– Performance are influenced by the

instruction selection and register
allocation

• In the middle-end
– Our focus today

41

Frontend

Middle-End

Backend

Programming
Language

Intermediate
Representation

Intermediate
Representation

Assembly

Opt.

Opt.

Opt.

HLL: High level language / IR: Intermediate representation
AST: Abstract syntax tree

Speedup Video Compression
with Optimization (real example)

42

692

198 190 181 178

llvm.O0 llvm.O1 llvm.O2 llvm.O3 llvm.O4

Time to Encode 2h of Movie with x264 *
(minutes)

*30 fps, cif (352x288), main profile, extrapolated from video “bridge close”
machine: Intel Core2Duo@2.26GHz, 8GB DDR3, MacOS X 10.7.4

No optimization
11 hours 32 minutes to

compress the movie With Optimizations
2 hours 58 minutes to
compress the movie

Speedup Video Compression
with Optimization (real example)

43

692

198 190 181 178

llvm.O0 llvm.O1 llvm.O2 llvm.O3 llvm.O4

Time to Encode 2h of Movie with x264 *
(minutes)

*30 fps, cif (352x288), main profile, extrapolated from video “bridge close”
machine: Intel Core2Duo@2.26GHz, 8GB DDR3, MacOS X 10.7.4

No optimizations
11 hours 32 minutes to

compress the movie With Optimizations
2 hours 58 minutes to
compress the movie

3.9 times faster
with compiler optimizations turned on

(encoding is almost in real time !)

Effect of Optimizations
on Power Consumption

• The K supercomputer dissipates
15MW

• Let us consider a program that
requires 1h to run
– You need 15MWH to run it

• Let us say you are able to 3.9 times
with optimization
– You need 15/3.9=3.8MWH to run it
– You saved 11.2MWH, that is, the

power consumption of 15
apartments (a small mansion)
during one month !

• All we had to do is to set the correct
optimization option to the compiler

44
MWH: Mega Watt per Hour (メガワット時)

45

What kind of Optimizations are
carried-out by Compilers ?

There are may optimization
techniques !

(LLVM: more than 50 !)
Carried-out optimization
depend on the compiler
and the target processor

46

• Compilers mainly optimize single-
thread performance
– Remove unnecessary computations

– Improve the use of cache to reduce
access latency

– Reduce memory accesses by using
processor registers

– Take advantage of ISA extension
(especially SIMD)

• Compilers are very bad at thread
parallelization
– It is the responsibility of the

programmer to parallelize the code

STS=1

STS=2

(see slide 15)

Practical Example: Remove
Unnecessary Calculations

47

for(i=0; i<strlen(str); i++) {
str[i] += ‘A’-’a’;

}

int N=strlen(str);
for(i=0; i<N; i++) {
str[i] += ‘A’-’a’;

}

int N=strlen(str);
int delta=‘A’-’s’;
for(i=0; i<N; i++) {
str[i] += delta;

}

Example of C program: transformation to capital letters
for string str of length N

computations = N^2 + N + N = o(N^2)

strlen ‘A’-’a’

+=

computations = N + N + N = 3N

strlen ‘A’-’a’

+=

computations = N + 1 + N = 2N+1

strlen ‘A’-’a’

+=

First optimization*

Second optimization*

*Type of optimization: loop-invariant removal

Frog example: Better Use of Processor
Instructions

48

The optimization we saw
before

In the middle end

Another optimization.
In the backend end

(instruction selection)

You need a frog that
can walk in diagonal

(different ISA)

ISA: Instruction set architecture (see slide 7) / MAC: Multiplication and Accumulation

Common example in real, modern processors:
• Compound instructions:

• MAC: perform multiplication and addition
• Memory access + arithmetic (common in Intel Processors)

• Vector instructions (see next lecture)

CONTROL AND DATA-FLOW GRAPHS

49

50

you shall go two times right
you shall go top
you shall go left
you shall go two times bottom
you shall go right

right
bottom
left

Frontend

Programming
Language

Assembly
Language

Middle-End

Intermediate Representation (IR)

Backend

IR

What kind of IR compilers use for real ?

Instructions and Graphs

現在地 現在地

51

Let us start with some definitions

Control flow instructions

Sequential instructions

Basic Block

Data dependencies

Taxonomy of Instructions

• Def. 1: Sequential instructions
– Are executed in the same order as

they are written

– Actually perform computations

– Examples: load, add …

• Def. 2: Control flow instructions
– Allow to jump between different

locations of a sequence

– Blue arrows

– Examples: branch, jump,
exceptions …

52

int a = 1;
int b = 2;
if (a<b) {
b = a;

} else {
a = b;

}

a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Control flow

C Language

IR instructions

Def. 3: The Basic Block

• A basic block is a sequence of instructions that are always executed
together

• A basic block only contains sequential instructions and often ends
with one control flow instruction

• Example:

53

a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Basic
Block 1

Basic
Block 2

Basic
Block 3

Basic
Block 4

Def. 4: Data Dependences
• For all instructions, we can define

– The input set: the set of the data that the instructions need to be executed
– The output set: the set of data generated by the instructions

• The inclusion between the input and output sets determines the type of
data dependencies
– See next slide

• Examples:

54

a=1 Input: variable a
Output: variable a

int a=1 Input: nothing
Output: variable a

a=b+1 Input: variables a and b
Output: variable a

if(a>3) Input: variables a
Output: nothing

Types of Data Dependences

55

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2
I5: a = b + a
I6: d = 6

Example Program

Read after write
One instruction reads the
value written by another
Example: I3 and I2

Write after read
One instruction reads a value
before it is written by another
instructions
Example: I5 and I4

Write after write
Two instructions write in the same
memory location or register
It is important to keep the order of writes
Examples: I1 and I2

Read after read
Two instructions read in the same
location
Often not a problem
Example: I3 and I4

What is the Big Deal with Data
Dependencies ?

• You can change the result of a program if you break a
dependency

• Example: break a read-after-write

56

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2
I5: a = b + a
I6: d = 6

I1: a = 2
I3: b = a + 1
I2: a = 3
I4: c = a + 2
I5: a = b + a
I6: d = 6

Input of I4:
b=4

Input of I4:
b=3

• The compiler often needs to move calculation to optimize
• It needs to analyze dependencies to determine when it

can (and can’t) move calculation around
• Constraint: the compiler should not change the output of

the program

Graphical Representation of Data
Dependencies

57

Opinput output

int a=0
int b=a+2
a = b+a

=0 a +

0

+

b

a

Expresses dependency: arrow
• From operation to input
• From output to operation

I show the constants
for completeness

=0 +

+

0

Simplification: remove
the intermediate results

Example:

Def. 5: The SSA Form
• Issue with the IR of previous slides

– Variables with the same names contain different data
– It is hard to understand the dependency between

instructions
– Example:

• I4 reads a, but it does not depend on I1
• The a of I1 and the a of I2 are actually different things

• Solution: use Static Single Assignment Form (SSA)
– Variables can only be assigned once
– Variables with the same names represent the same

data
– Makes it easier to understand data dependencies
– Developed in the 1980s
– Now all IR are in SSA form

• Note: SSA introduce an instruction called “PHI” to
solve name conflicts during branches
– I won’t detail this today

58

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2
I5: a = b + a
I6: d = 6

I1: a1 = 2
I2: a2 = 3
I3: b1 = a2 + 1
I4: c1 = a2 + 2
I5: a3 = b1 + a2
I6: d1 = 6

59

The 3 important graphs that define the IR

Control Flow Graph

Data Flow Graph

Function Call Graph

Graph 1: The Control-Flow Graph
(CFG)

• Graph (V,E) where
– V is the set of basic blocks of the program
– E represents the execution order of basic blocks

• Example:

60

a = 1
b = 2
if a<b goto L2

L1:
b = a
goto L3

L2:
a = b
goto L3

L3:

Basic
Block 1

Basic
Block 2

Basic
Block 3

Basic
Block 4

BB1

BB2 BB3

BB4

Graph 2: The Data Flow Graph (DFG)

• Data dependences can be graphically displayed
• Definition of the data flow graph DFG = (V,E)

– V: the set of instructions
– E: the RAW and WAW dependencies

• Example:

61

I1: a = 2
I2: a = 3
I3: b = a + 1
I4: c = a + 2
I5: a = b + a
I6: d = 6

I1: a1 = 2
I2: a2 = 3
I3: b1 = a2 + 1
I4: c1 = a2 + 2
I5: a3 = b1 + a2
I6: d1 = 6

Program SSA Form
I1

I2

I3 I4

I5

I6

Graph 3: The Function Call Graph (FCG)

• The third representation used by compilers is the function call graph
– Graph (V,E)
– V are functions of the program
– E symbolize function calls

• Optimizations that involve the function-call graph is are called Inter-
Procedural Optimizations (IPO)
– Early compiler did not feature any IPA

• Example:

62

int main() {
return do(6)

}
int do(int x) {

if(x!=0) {
do(i-1)

} else {
return 1;

}
}C Language

main()

do()

Nobody says FCG

Put Everything Together

• Compilers analyze program using IR
– IR: Intermediate Representation
– More expressive that text-form: contains semantic information

• The IR consists of
– Operations and data types
– Control flow graph and function call graph: express the order of

execution
– Data flow graph: expresses the dependency between

instructions

• The SSA representation
– SSA: Single Static Assignment
– Makes data dependency analysis easier

63

EXAMPLE OF OPTIMIZATIONS

64

Overview of Optimizations

• Optimizations may change
– The control flow graph
– The data flow graph (without breaking dependencies)
– The function call graph

• Some optimizations are always efficient
• Some other are double edged

– Depending on the program / target processor an optimization can
actually reduce performance

• Current compilers almost only optimize single-thread, Von
Neumann programs
– Because most language follow this paradigms
– Especially, there exist few efficient optimization for threaded programs

• Compilers for other architecture (e.g. GPU) exist, but they provide
with very few optimization

65

Major Targets for Optimizations

• Calculations
– Reduce the amount of calculations

– Use the computations units of the processor more
efficiently (e.g. SIMD units)

• Flow / Order of execution
– Change the order of execution to allow better single-

thread parallelism (SIMD, out-of-order execution)

• Data
– Change the order the program access to the memory

– Often try to take advantage of caches (If any)

66

Example 1: Constant Propagation

67

int a = 1;
int b = 2;
c = a + b;

a

1

+

b

2

+

=

c

1

1

+

2

2

+

=

c

1 2

=

c

3 c = 3;

Optimizer

Original Program

Intermediate Representation:
Control Data Flow Graph (CDFG)

Data dependency

Optimized
Program

Example 2: Function Inlining

68

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return inc(x-1);

} else {
return x;

}
}
int main() {

return do(6);
}

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return x-1+1;

} else {
return x;

}
}
int main() {

return do(6);
}

Removes the call to acc()
Saves execution time:
• a function call requires

several control-flow
instructions

• these instructions disappear

Very efficient, especially in
object-oriented languages
where programmers often
implement small methods

Increases the size of programs. May negatively affect
power consumption and instruction cache usage on
some processors (especially embedded)

Example 3: The Power of Combination

69

Optimizations are even more powerful
when combined !

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return inc(x-1);

} else {
a = inc(x);
return a – 1;

}
}
int main() {

return do(6);
}

int inc(int x) {
return x + 1;

}
int do(int x) {

if (x!=0) {
return x-1+1;

} else {
a = x+1;
return a-1;

}
}
int main() {

return do(6);
}

int inc(int x) {
return x + 1;

}
int do(int x) {

return x;
}
int main() {

return do(6);
}

Inlining
Constant

Propagation

int inc(int x) {
return x + 1;

}
int do(int x) {

return x;
}
int main() {

return 6;
}

Inlining

Only one
instruction left !

Combination in a Real Compiler

70

$> opt [...] –O1 –debug-pass=Structure
Pass Arguments: [...]
Target Library Information
Target Data Layout
No Alias Analysis (always returns 'may' alias)
Type-Based Alias Analysis
Basic Alias Analysis (stateless AA impl)
ModulePass Manager
Global Variable Optimizerl loops
Interprocedural Sparse Conditional Constant Propagation
Dead Argument Elimination
FunctionPass Manager Code Motion
Combine redundant instructions
Simplify the CFG

Basic CallGraph Construction
Call Graph SCC Pass Manager
Remove unused exception handling info
Inliner for always_inline functions
Deduce function attributes
FunctionPass Manager
Scalar Replacement of Aggregates (SSAUp)
Dominator Tree Construction
[...]
Loop Pass Manager
Canonicalize natural loops
[...]

Combine redundant instructions
Scalar Evolution Analysis
[...]

Strip Unused Function Prototypes
FunctionPass Manager
Preliminary module verification
Dominator Tree Construction
Module Verifier

Bitcode Writer

Option “O1” of LLVM
About 40 optimizations
With many repetitions

LOOP OPTIMIZATIONS

71

What is a Loop
• A loop is a piece of code that may be executed several times
• It corresponds to a cycle in the data flow graph (DFG)
• In compilation we consider the following constraints:

– a single entry point
– we also often only allow a single exit point

• Example:

72

for(i=0; i<MAX; i++) {
a[i]++;

}

i=0
L1:

if i>=MAX goto L3
L2:

a1 = load a + 1
a2 = a1 + 1
store a2, a+1
i = i - 1
goto L1

L3:

BB1

BB2

BB3

BB4

BB1

BB2

BB3

BB4

Loop
{BB2,BB3}

BB2: head of the
loop

BB3: body of the
loop

Why are Loops Important ?

• Rule of “80% / 20%”
– Loops usually count for 20% of the

code of a program
– But programs usually spend more

than 80% of their times in loops

• Example:
– Let us consider that we divide by

two the execution of a given piece
of code

– Case 1: the code is outside a loop
• total time = 20% / 2 + 80% = 90% of

the original program

– Case 2: the code is inside a loop
• total time = 20% + 80% / 2 = 60% of

the original program !

73

Instructions

Loop

Other

Execution Time

Loop

Other

Example of Loop Optimization
Nest Interchange

74

int a[4][4];
for (int i=0; i<4; i++)

for (int j=0; j<4; j++)
a[j][i] ++;

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16Memory

Accesses are not sequential
Processor caches are not designed to handle such cases
All memory accesses will miss !

int a[4][4];
for (int j=0; j<4; j++)

for (int i=0; i<4; i++)
a[j][i] ++;

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Memory

If we swap the “for”, the access pattern becomes sequential
This is the best access pattern for caches.
We miss only when we reach a new cache line
On my computer: 5 times faster !

CONCLUSION

75

Why Should I Study Optimizing
Compilers ?

• If you don’t program, you don’t need

• Otherwise, it is important to understand
– What kind of code your compiler expects

– What kind of code your processor is designed for

• It is often possible to reduce the execution
time by several times with simple code
modifications !

76

Two Levers for Optimizations

• Compiler options

– O2, O3

– Vectorization options

• Code transformations (by hand)

– First objective: Change the order and nature of
operations by hand

– Second objective: Make it easier for the compiler
to optimize

77

Example of Loop Optimizations

• Loop unrolling

• Loop fusion

• Loop fission

• Loop collapsing

• Loop unroll and jam

• Polyhedral
Optimizations

78

Data from INRIA laboratory, France
Optimizations are made automatically by some research
algorithms.

Up to 8.6
times faster !

2.7 times faster
in average

Conclusion

• Computer programs are written in language that the processor doesn’t
understand
– The compiler does the translation

• But a compiler is more than just a translator
– It produces fast code
– To do so, it carries out optimizations

• The compiler uses powerful internal representation to analyze the code
– Data dependency analysis
– Control flow analysis

• Optimizations are often double-edged
– They may reduce performances if misused
– Optimizations should be tailored to the target processor

• The most important optimization targets are loops
– Rule of 80% / 20%
– We can expect several times performance increase !

• In practice optimization is a fine mix of
– manual-tuning
– compiler options setting

79

THANK YOU VERY MUCH

80

